2009年5月10日 星期日

光是聚在妹多的地方沒用, 得要耍帥耍得好

文獻來源: Young KA, Genner MJ, Joyce DA, Haeslere MP. 2009. Hotshots, hot spots, and female preference: exploring lek formation models with a bower-building cichlid fish. Behavioral Ecology 20(3): 609-615; doi:10.1093/beheco/arp038

Abstract
In many animals, males congregate in leks that females visit for the sole purpose of mating. We observed male and female behavior on 3 different-sized leks of the bower-building cichlid fish Nyassachromis cf. microcephalus to test predictions of 3 prominent lek models: the "hotshot," "hot spot," and "female preference" models. In this system, we were able to refine these predictions by distinguishing between indirect mate choice, by which females restrict their set of potential mates in the absence of individual male assessment, and direct mate choice, by which females assess males and their territories through dyadic behavioral interactions. On no lek were males holding central territories favored by indirect or direct mate choice, contrary to the prediction of the hotshot model that leks form because inferior males establish territories surrounding hotshot males preferred by females. Average female encounter rate of males increased with lek size, a pattern typically interpreted as evidence that leks form through female preference for lekking males, rather than because males congregate in hot spots of high female density. Female propensity to engage in premating behavior once courted did not increase with lek size, suggesting female preference for males on larger leks operated through indirect choice rather than direct choice based on individual assessment. The frequency of male–male competitive interactions increased with lek size, whereas their foraging rate decreased, implying a cost to males maintaining territories on larger leks. Together these data most strongly support the female preference model, where females may benefit through indirect mate choice for males able to meet the competitive cost of occupying larger leks.

圖片連結: imageshack (photo credit: Anibal)